Hey all, I need a bit of help starting on a homework assignment. I'm not asking for you to do it for me, I just need a little help getting started on it.

Here is the site with information about the assignment: http://scidiv.bcc.ctc.edu/fl/cs210/Program4-S08.html

I really need just a little bit of help to get started on it.

``````//
// Class Poly will manage and manipulate polynomials from x^0 to x^10.
//
#include <iostream>
using namespace std;

class Poly {

private:

bool state; // indicates if polynomial is valid

public:

// constructors - set state=true
Poly(void)
{
set Poly = 0
}
Poly(double c)
{
// set polynomial = c
}

Poly(double b, double a)
{
// set polynomial = bx+a
}

Poly(double c, double b, double a)
{
// set polynomial = cx^2+bx+a
}

Poly(double d, double c, double b, double a)
{
// set polynomial = dx^3+cx^2+bx+a
}

Poly(double e, double d, double c, double b, double a)
{
// set polynomial = ex^4+dx^3+cx^2+bx+a
}

Poly(double f, double e, double d, double c, double b, double a)
{
// set polynomial = fx^5+ex^4+dx^3+cx^2+bx+a
}

Poly(double g, double f, double e, double d, double c, double b, double a)
{
// set polynomial = gx^6+fx^5+ex^4+dx^3+cx^2+bx+a
}

Poly(double h, double g, double f, double e, double d, double c, double b, double a)
{
// set polynomial = hx^7+gx^6+fx^5+ex^4+dx^3+cx^2+bx+a
}

Poly(double i, double h, double g, double f, double e, double d, double c, double b, double a)
{
// set polynomial = ix^8+hx^7+gx^6+fx^5+ex^4+dx^3+cx^2+bx+a
}

Poly(double j, double i, double h, double g, double f, double e, double d, double c, double b, double a)
{
// set polynomial = jx^9+ix^8+hx^7+gx^6+fx^5+ex^4+dx^3+cx^2+bx+a
}

Poly(double k, double j, double i, double h, double g, double f, double e, double d, double c, double b, double a)
{
// set polynomial = kx^10+jx^9+ix^8+hx^7+gx^6+fx^5+ex^4+dx^3+cx^2+bx+a
}

// member functions
bool setterm(int order, double coefficient)
{
// sets the coefficient for a specific term in the polynomial,
// if there are problems make no change, return false
// Example: setterm(3,5.4) assigns 5.4x^3
//          setterm(0,-4) assigns -4
//          setterm(11,1) returns false, x^10 is highest order
//          setterm(-1,1) returns false, no decimal portion
}

void setpoly(double c[])
{
// sets the coefficient for the entire polynomial
// c[i] is the coefficient for x^i
// set state=true
}

double evaluate(double x)
{
// returns value of polynomial evaluated at x
// returns 0 if state=false
}

void zero(void)
{
// sets all coefficients to 0
// sets state=true
}

{
// adds this polynomial with a and returns result as a Poly
}

Poly subract(Poly a)
{
// subtracts a from this polynomial and returns result as a Poly
}

Poly multiply(Poly a)
{
// multiplies this polynomial with a and returns result as a Poly
// if multiplication results in terms higher than x^10,
// return Poly with state=false
}

bool getstate(void)
{
// return state
}

Poly polydivide(Poly a)
{
// divides this polynomial by a and returns only the polynomial result
// Example: (x^3+2x^2-x+5)/(x-1) returns (x^2+3x+2)
//          (2x^2-5x-12)/(2x+3) returns (x-4)
}

Poly polymod(Poly a)
{
// divides this polynomial by a and returns only the remainder
// Example: (3x^4-x^2+4x+2)/(x^2) returns (4x+2)
//          (2x^2-5x-12)/(x-4) returns (0)
}

string tostring(int i)
{
// returns string that expresses polynomial in following format
// i (0<=i<=8) represents number of places after decimal to round to
// Example: (i=0) 5x^3-x^2-80x+5
//          (i=2) -7.34x^4+8.02x
// if state=false, return "Invalid Polynomial"
// if i is outside of limits, return "Bad Decimal Setting"
}

};``````

I'd add a private data member consisting of an array of 10 doubles to represent the possible coefficients of a polynomial. Then I'd get at least one constructor working and the tostring() method working so I could review/monitor results as I started to work on each of the other member functions. I'd do one member function (after the intial constructor and tostring() functions are done), at most, at a time, compiling and testing as I went.

This looks pretty straightforward...

Basically you're using a pattern.

Think of how you can use iteration (or recursion) to add the correct exponent and value to each section of the polynomial so you'll, only need a small block of code.

Be a part of the DaniWeb community

We're a friendly, industry-focused community of developers, IT pros, digital marketers, and technology enthusiasts meeting, networking, learning, and sharing knowledge.