1

```
# a simple recursive permutation function
# the number of permutations of a sequence of n unique items is given by n! (n factorial)
# more details at http://mathworld.wolfram.com/Permutation.html
# tested with Python24 vegaseat 16feb2006
def permutate(seq):
"""permutate a sequence and return a list of the permutations"""
if not seq:
return [seq] # is an empty sequence
else:
temp = []
for k in range(len(seq)):
part = seq[:k] + seq[k+1:]
#print k, part # test
for m in permutate(part):
temp.append(seq[k:k+1] + m)
#print m, seq[k:k+1], temp # test
return temp
# test the module
if __name__ == "__main__":
# permutate a string, how many recognizable words does this generate?
print permutate('owl')
print permutate('art')
# test for duplicates
blist = permutate('bush')
print "items in bush list =", len(blist) # should be 4! or 1*2*3*4 = 24
print "items in bush set =", len(set(blist)) # should be the same
tlist = permutate('tart')
print "items in tart list =", len(tlist) # should be 4! or 1*2*3*4 = 24
print "items in tart set =", len(set(tlist)) # less unique since there are two 't'
# permutate a list
list1 = [7, 8, 9]
for list2 in permutate(list1):
print list2
"""
result =
['owl', 'olw', 'wol', 'wlo', 'low', 'lwo']
['art', 'atr', 'rat', 'rta', 'tar', 'tra']
items in bush list = 24
items in bush set = 24
items in tart list = 24
items in tart set = 12
[7, 8, 9]
[7, 9, 8]
[8, 7, 9]
[8, 9, 7]
[9, 7, 8]
[9, 8, 7]
"""
```

The article starter has earned a lot of community kudos, and such articles offer a bounty for quality replies.