0

I am writing a polynomial class and finally got done writing all the functions, set up the main but get an assertion failed _BLOCK_TYPE_IS_VALID(pHead->nBlockUse). I read it has something to do with the going over the size of the heap, but don't entirely grasp that. Any clues?

```
#include <iostream>
#include "polynomial.h"
using namespace std;
int main()
{
int c1[5] = {-19, 1, -12, 3, 2};
int c2[8] = {-19, 1, -6, 0, 0, 7, 0, 2};
Poly p1(4, c1);
Poly p2(7, c2);
Poly p3;
p3 = p1 + p2;
cout << p3;
p3 = p1 - p2;
cout << p3;
p3 = p1 * 10;
cout << p3;
p3 = p1 * p2;
cout << p3;
bool flag = p1 == p2;
cout << "Are p1 and p2 equal? (0 = false, 1 = true) " << flag << endl;
p1[3] = p2[5];
cout << p1;
return 0;
}
#ifndef POLYNOMIAL_H
#define POLYNOMIAL_H
#include <iostream>
#include <cmath>
using namespace std;
class Poly
{
private:
int order;
int size;
int *coeff;
public:
//Default Constructor
Poly():order(1)
{
coeff = new int[1];
*(coeff + 0) = 1;
}
//Parameterized Constructor
Poly(int Order, int Default):order(Order)
{
size = order + 1;
coeff = new int[size];
for(int i = 0; i < size; i++)
*(coeff + i) = Default;
}
//Use array to assign coefficients
Poly(int Order, int *Coeff):order(Order)
{
size = order + 1;
coeff = new int[size];
for(int i = 0; i < size; i++)
*(coeff + i) = Coeff[i];
}
//Copy constructor
Poly(const Poly &rhs)
{
size = rhs.size;
coeff = new int[size];
memcpy(coeff, rhs.coeff, sizeof(int)*size);
}
//Destructor
~Poly(){};
void set()
{
cout << endl;
for(int i = 0; i < size; i++)
{
cout << "Enter X^" << i << ": ";
cin >> *(coeff + i);
}
cout << endl;
}
void set(int Coeff[], int Size)
{
delete []coeff;
order = Size - 1;
coeff = new int[Size];
coeff = Coeff;
};
int getOrder(){return order;}
int * get(){return coeff;}
Poly operator+(const Poly &rhs)
{
int sizen;
int *Coeff;
if(size < rhs.size)
sizen = rhs.size;
else
sizen = size;
Coeff = new int[sizen];
for(int i = 0; i < sizen; i++)
Coeff[i] = *(coeff + i) + *(rhs.coeff + i);
return Poly(sizen - 1, Coeff);
}
Poly operator-(const Poly &rhs)
{
int sizen;
int *Coeff;
if(size < rhs.size)
sizen = rhs.size;
else
sizen = size;
Coeff = new int[sizen];
for(int i = 0; i < sizen; i++)
Coeff[i] = *(coeff + i) - *(rhs.coeff + i);
return Poly(sizen - 1, Coeff);
}
Poly operator*(const int scale)
{
int *Coeff;
Coeff = new int[size];
for(int i = 0; i < size; i++)
Coeff[i] = *(coeff + i) * scale;
return Poly(size - 1, Coeff);
}
Poly operator*(const Poly &rhs)
{
int *Coeff;
int Order = order + rhs.order;
Coeff = new int[Order + 1]();
for(int i = 0; i < size; i++)
{
for(int j = 0; j < rhs.size; j++)
{
*(Coeff + (i + j)) += coeff[i] * rhs.coeff[j];
}
}
return Poly(Order, Coeff);
}
bool operator==(const Poly &rhs)
{
bool test = true;
if(size == rhs.size)
{
for(int i = 0; i < size; i++)
{
if(*(coeff + i) != *(rhs.coeff + i))
test = false;
}
}
else
test = false;
return test;
}
Poly operator=(const Poly &rhs)
{
delete []coeff;
return Poly(rhs.size - 1, rhs.coeff);
}
const int & operator[](int I)const{return *(coeff + I);}
int & operator[](int I){return *(coeff + I);}
int operator()(int x)
{
int y = 0;
for(int i = 0; i < size; i++)
y += coeff[i] * pow(static_cast<double>(x), i);
return y;
}
friend ostream &operator<<(ostream &Out, const Poly &rhs)
{
for(int i = (rhs.size - 1); i > 1; i--)
{
if(i == rhs.size - 1)
{
if(rhs.coeff[i] > 0)
Out << rhs.coeff[i] << "X^" << i;
else
if(rhs.coeff[i] < 0)
Out << "-" << (rhs.coeff[i] * -1) << "X^" << i;
}
else if(rhs.coeff[i] > 0)
Out << " + " << rhs.coeff[i] << "X^" << i;
else if(rhs.coeff[i] < 0)
Out << " - " << (rhs.coeff[i] * -1) << "X^" << i;
}
if(rhs.coeff[1] > 0)
Out << " + " << rhs.coeff[1] << "X";
else if(rhs.coeff[0] < 0)
Out << " - " << (rhs.coeff[1] * -1) << "X";
if(rhs.coeff[0] > 0)
Out << " + " << rhs.coeff[0];
else if(rhs.coeff[0] < 0)
Out << " - " << (rhs.coeff[0] * -1);
Out << endl;
return Out;
}
friend istream &operator>>(istream &In, Poly &rhs)
{
cout << "Enter order of polynomial: ";
In >> rhs.order;
rhs.size = rhs.order + 1;
for(int i = 0; i < rhs.size; i++)
{
cout << "Enter coefficient to X^" << i << " : ";
In >> *(rhs.coeff + i);
}
return In;
}
};
#endif
```