Hello:
Anyone know of an easy way to cast the unsigned char in[16] in the below code to an LPCWSTR using just the CRT? I tried swprintf but it wasn't working. I've been googling this for a week and appreciate the help.

/*  
******************************************************************  
**       Advanced Encryption Standard implementation in C.      **  
**       By Niyaz PK                                            **  
**       E-mail: niyazpk@gmail.com                              **  
**       Downloaded from Website: www.hoozi.com                 **  
******************************************************************  
This is the source code for encryption using the latest AES algorithm.  
******************************************************************  
*/  
  
// Include stdio.h for standard input/output.   
// Used for giving output to the screen.   
#include<stdio.h>   
  
// The number of columns comprising a state in AES. This is a constant in AES. Value=4   
#define Nb 4   
  
// The number of rounds in AES Cipher. It is simply initiated to zero. The actual value is recieved in the program.   
int Nr=0;   
  
// The number of 32 bit words in the key. It is simply initiated to zero. The actual value is recieved in the program.   
int Nk=0;   
  
// in - it is the array that holds the plain text to be encrypted.   
// out - it is the array that holds the output CipherText after encryption.   
// state - the array that holds the intermediate results during encryption.   
unsigned char in[16], out[16], state[4][4];   
  
// The array that stores the round keys.   
unsigned char RoundKey[240];   
  
// The Key input to the AES Program   
unsigned char Key[32];   
  
int getSBoxValue(int num)   
{   
    int sbox[256] =   {   
    //0     1    2      3     4    5     6     7      8    9     A      B    C     D     E     F   
    0x63, 0x7c, 0x77, 0x7b, 0xf2, 0x6b, 0x6f, 0xc5, 0x30, 0x01, 0x67, 0x2b, 0xfe, 0xd7, 0xab, 0x76, //0   
    0xca, 0x82, 0xc9, 0x7d, 0xfa, 0x59, 0x47, 0xf0, 0xad, 0xd4, 0xa2, 0xaf, 0x9c, 0xa4, 0x72, 0xc0, //1   
    0xb7, 0xfd, 0x93, 0x26, 0x36, 0x3f, 0xf7, 0xcc, 0x34, 0xa5, 0xe5, 0xf1, 0x71, 0xd8, 0x31, 0x15, //2   
    0x04, 0xc7, 0x23, 0xc3, 0x18, 0x96, 0x05, 0x9a, 0x07, 0x12, 0x80, 0xe2, 0xeb, 0x27, 0xb2, 0x75, //3   
    0x09, 0x83, 0x2c, 0x1a, 0x1b, 0x6e, 0x5a, 0xa0, 0x52, 0x3b, 0xd6, 0xb3, 0x29, 0xe3, 0x2f, 0x84, //4   
    0x53, 0xd1, 0x00, 0xed, 0x20, 0xfc, 0xb1, 0x5b, 0x6a, 0xcb, 0xbe, 0x39, 0x4a, 0x4c, 0x58, 0xcf, //5   
    0xd0, 0xef, 0xaa, 0xfb, 0x43, 0x4d, 0x33, 0x85, 0x45, 0xf9, 0x02, 0x7f, 0x50, 0x3c, 0x9f, 0xa8, //6   
    0x51, 0xa3, 0x40, 0x8f, 0x92, 0x9d, 0x38, 0xf5, 0xbc, 0xb6, 0xda, 0x21, 0x10, 0xff, 0xf3, 0xd2, //7   
    0xcd, 0x0c, 0x13, 0xec, 0x5f, 0x97, 0x44, 0x17, 0xc4, 0xa7, 0x7e, 0x3d, 0x64, 0x5d, 0x19, 0x73, //8   
    0x60, 0x81, 0x4f, 0xdc, 0x22, 0x2a, 0x90, 0x88, 0x46, 0xee, 0xb8, 0x14, 0xde, 0x5e, 0x0b, 0xdb, //9   
    0xe0, 0x32, 0x3a, 0x0a, 0x49, 0x06, 0x24, 0x5c, 0xc2, 0xd3, 0xac, 0x62, 0x91, 0x95, 0xe4, 0x79, //A   
    0xe7, 0xc8, 0x37, 0x6d, 0x8d, 0xd5, 0x4e, 0xa9, 0x6c, 0x56, 0xf4, 0xea, 0x65, 0x7a, 0xae, 0x08, //B   
    0xba, 0x78, 0x25, 0x2e, 0x1c, 0xa6, 0xb4, 0xc6, 0xe8, 0xdd, 0x74, 0x1f, 0x4b, 0xbd, 0x8b, 0x8a, //C   
    0x70, 0x3e, 0xb5, 0x66, 0x48, 0x03, 0xf6, 0x0e, 0x61, 0x35, 0x57, 0xb9, 0x86, 0xc1, 0x1d, 0x9e, //D   
    0xe1, 0xf8, 0x98, 0x11, 0x69, 0xd9, 0x8e, 0x94, 0x9b, 0x1e, 0x87, 0xe9, 0xce, 0x55, 0x28, 0xdf, //E   
    0x8c, 0xa1, 0x89, 0x0d, 0xbf, 0xe6, 0x42, 0x68, 0x41, 0x99, 0x2d, 0x0f, 0xb0, 0x54, 0xbb, 0x16 }; //F   
    return sbox[num];   
}   
  
// The round constant word array, Rcon[i], contains the values given by    
// x to th e power (i-1) being powers of x (x is denoted as {02}) in the field GF(28)   
// Note that i starts at 1, not 0).   
int Rcon[255] = {   
    0x8d, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x1b, 0x36, 0x6c, 0xd8, 0xab, 0x4d, 0x9a,    
    0x2f, 0x5e, 0xbc, 0x63, 0xc6, 0x97, 0x35, 0x6a, 0xd4, 0xb3, 0x7d, 0xfa, 0xef, 0xc5, 0x91, 0x39,    
    0x72, 0xe4, 0xd3, 0xbd, 0x61, 0xc2, 0x9f, 0x25, 0x4a, 0x94, 0x33, 0x66, 0xcc, 0x83, 0x1d, 0x3a,    
    0x74, 0xe8, 0xcb, 0x8d, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x1b, 0x36, 0x6c, 0xd8,    
    0xab, 0x4d, 0x9a, 0x2f, 0x5e, 0xbc, 0x63, 0xc6, 0x97, 0x35, 0x6a, 0xd4, 0xb3, 0x7d, 0xfa, 0xef,    
    0xc5, 0x91, 0x39, 0x72, 0xe4, 0xd3, 0xbd, 0x61, 0xc2, 0x9f, 0x25, 0x4a, 0x94, 0x33, 0x66, 0xcc,    
    0x83, 0x1d, 0x3a, 0x74, 0xe8, 0xcb, 0x8d, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x1b,    
    0x36, 0x6c, 0xd8, 0xab, 0x4d, 0x9a, 0x2f, 0x5e, 0xbc, 0x63, 0xc6, 0x97, 0x35, 0x6a, 0xd4, 0xb3,    
    0x7d, 0xfa, 0xef, 0xc5, 0x91, 0x39, 0x72, 0xe4, 0xd3, 0xbd, 0x61, 0xc2, 0x9f, 0x25, 0x4a, 0x94,    
    0x33, 0x66, 0xcc, 0x83, 0x1d, 0x3a, 0x74, 0xe8, 0xcb, 0x8d, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20,    
    0x40, 0x80, 0x1b, 0x36, 0x6c, 0xd8, 0xab, 0x4d, 0x9a, 0x2f, 0x5e, 0xbc, 0x63, 0xc6, 0x97, 0x35,    
    0x6a, 0xd4, 0xb3, 0x7d, 0xfa, 0xef, 0xc5, 0x91, 0x39, 0x72, 0xe4, 0xd3, 0xbd, 0x61, 0xc2, 0x9f,    
    0x25, 0x4a, 0x94, 0x33, 0x66, 0xcc, 0x83, 0x1d, 0x3a, 0x74, 0xe8, 0xcb, 0x8d, 0x01, 0x02, 0x04,    
    0x08, 0x10, 0x20, 0x40, 0x80, 0x1b, 0x36, 0x6c, 0xd8, 0xab, 0x4d, 0x9a, 0x2f, 0x5e, 0xbc, 0x63,    
    0xc6, 0x97, 0x35, 0x6a, 0xd4, 0xb3, 0x7d, 0xfa, 0xef, 0xc5, 0x91, 0x39, 0x72, 0xe4, 0xd3, 0xbd,    
    0x61, 0xc2, 0x9f, 0x25, 0x4a, 0x94, 0x33, 0x66, 0xcc, 0x83, 0x1d, 0x3a, 0x74, 0xe8, 0xcb  };   
  
// This function produces Nb(Nr+1) round keys. The round keys are used in each round to encrypt the states.    
void KeyExpansion()   
{   
    int i,j;   
    unsigned char temp[4],k;   
       
    // The first round key is the key itself.   
    for(i=0;i<Nk;i++)   
    {   
        RoundKey[i*4]=Key[i*4];   
        RoundKey[i*4+1]=Key[i*4+1];   
        RoundKey[i*4+2]=Key[i*4+2];   
        RoundKey[i*4+3]=Key[i*4+3];   
    }   
  
    // All other round keys are found from the previous round keys.   
    while (i < (Nb * (Nr+1)))   
    {   
        for(j=0;j<4;j++)   
        {   
            temp[j]=RoundKey[(i-1) * 4 + j];   
        }   
        if (i % Nk == 0)   
        {   
            // This function rotates the 4 bytes in a word to the left once.   
            // [a0,a1,a2,a3] becomes [a1,a2,a3,a0]   
  
            // Function RotWord()   
            {   
                k = temp[0];   
                temp[0] = temp[1];   
                temp[1] = temp[2];   
                temp[2] = temp[3];   
                temp[3] = k;   
            }   
  
            // SubWord() is a function that takes a four-byte input word and    
            // applies the S-box to each of the four bytes to produce an output word.   
  
            // Function Subword()   
            {   
                temp[0]=getSBoxValue(temp[0]);   
                temp[1]=getSBoxValue(temp[1]);   
                temp[2]=getSBoxValue(temp[2]);   
                temp[3]=getSBoxValue(temp[3]);   
            }   
  
            temp[0] =  temp[0] ^ Rcon[i/Nk];   
        }   
        else if (Nk > 6 && i % Nk == 4)   
        {   
            // Function Subword()   
            {   
                temp[0]=getSBoxValue(temp[0]);   
                temp[1]=getSBoxValue(temp[1]);   
                temp[2]=getSBoxValue(temp[2]);   
                temp[3]=getSBoxValue(temp[3]);   
            }   
        }   
        RoundKey[i*4+0] = RoundKey[(i-Nk)*4+0] ^ temp[0];   
        RoundKey[i*4+1] = RoundKey[(i-Nk)*4+1] ^ temp[1];   
        RoundKey[i*4+2] = RoundKey[(i-Nk)*4+2] ^ temp[2];   
        RoundKey[i*4+3] = RoundKey[(i-Nk)*4+3] ^ temp[3];   
        i++;   
    }   
}   
  
// This function adds the round key to state.   
// The round key is added to the state by an XOR function.   
void AddRoundKey(int round)    
{   
    int i,j;   
    for(i=0;i<4;i++)   
    {   
        for(j=0;j<4;j++)   
        {   
            state[j][i] ^= RoundKey[round * Nb * 4 + i * Nb + j];   
        }   
    }   
}   
  
// The SubBytes Function Substitutes the values in the   
// state matrix with values in an S-box.   
void SubBytes()   
{   
    int i,j;   
    for(i=0;i<4;i++)   
    {   
        for(j=0;j<4;j++)   
        {   
            state[i][j] = getSBoxValue(state[i][j]);   
  
        }   
    }   
}   
  
// The ShiftRows() function shifts the rows in the state to the left.   
// Each row is shifted with different offset.   
// Offset = Row number. So the first row is not shifted.   
void ShiftRows()   
{   
    unsigned char temp;   
  
    // Rotate first row 1 columns to left       
    temp=state[1][0];   
    state[1][0]=state[1][1];   
    state[1][1]=state[1][2];   
    state[1][2]=state[1][3];   
    state[1][3]=temp;   
  
    // Rotate second row 2 columns to left       
    temp=state[2][0];   
    state[2][0]=state[2][2];   
    state[2][2]=temp;   
  
    temp=state[2][1];   
    state[2][1]=state[2][3];   
    state[2][3]=temp;   
  
    // Rotate third row 3 columns to left   
    temp=state[3][0];   
    state[3][0]=state[3][3];   
    state[3][3]=state[3][2];   
    state[3][2]=state[3][1];   
    state[3][1]=temp;   
}   
  
// xtime is a macro that finds the product of {02} and the argument to xtime modulo {1b}     
#define xtime(x)   ((x<<1) ^ (((x>>7) & 1) * 0x1b))   
  
// MixColumns function mixes the columns of the state matrix   
// The method used may look complicated, but it is easy if you know the underlying theory.   
// Refer the documents specified above.   
void MixColumns()   
{   
    int i;   
    unsigned char Tmp,Tm,t;   
    for(i=0;i<4;i++)   
    {       
        t=state[0][i];   
        Tmp = state[0][i] ^ state[1][i] ^ state[2][i] ^ state[3][i] ;   
        Tm = state[0][i] ^ state[1][i] ; Tm = xtime(Tm); state[0][i] ^= Tm ^ Tmp ;   
        Tm = state[1][i] ^ state[2][i] ; Tm = xtime(Tm); state[1][i] ^= Tm ^ Tmp ;   
        Tm = state[2][i] ^ state[3][i] ; Tm = xtime(Tm); state[2][i] ^= Tm ^ Tmp ;   
        Tm = state[3][i] ^ t ; Tm = xtime(Tm); state[3][i] ^= Tm ^ Tmp ;   
    }   
}   
  
// Cipher is the main function that encrypts the PlainText.   
void Cipher()   
{   
    int i,j,round=0;   
  
    //Copy the input PlainText to state array.   
    for(i=0;i<4;i++)   
    {   
        for(j=0;j<4;j++)   
        {   
            state[j][i] = in[i*4 + j];   
        }   
    }   
  
    // Add the First round key to the state before starting the rounds.   
    AddRoundKey(0);    
       
    // There will be Nr rounds.   
    // The first Nr-1 rounds are identical.   
    // These Nr-1 rounds are executed in the loop below.   
    for(round=1;round<Nr;round++)   
    {   
        SubBytes();   
        ShiftRows();   
        MixColumns();   
        AddRoundKey(round);   
    }   
       
    // The last round is given below.   
    // The MixColumns function is not here in the last round.   
    SubBytes();   
    ShiftRows();   
    AddRoundKey(Nr);   
  
    // The encryption process is over.   
    // Copy the state array to output array.   
    for(i=0;i<4;i++)   
    {   
        for(j=0;j<4;j++)   
        {   
            out[i*4+j]=state[j][i];   
        }   
    }   
}   
void main()   
{   
    int i;   
  
    // Receive the length of key here.   
    while(Nr!=128 && Nr!=192 && Nr!=256)   
    {   
        printf("Enter the length of Key(128, 192 or 256 only): ");   
        scanf("%d",&Nr);   
    }   
       
    // Calculate Nk and Nr from the received value.   
    Nk = Nr / 32;   
    Nr = Nk + 6;   
  
  
  
// Part 1 is for demonstrative purpose. The key and plaintext are given in the program itself.   
//     Part 1: ********************************************************   
       
    // The array temp stores the key.   
    // The array temp2 stores the plaintext.   
    unsigned char temp[32] = {0x00  ,0x01  ,0x02  ,0x03  ,0x04  ,0x05  ,0x06  ,0x07  ,0x08  ,0x09  ,0x0a  ,0x0b  ,0x0c  ,0x0d  ,0x0e  ,0x0f};   
    unsigned char temp2[32]= {0x00  ,0x11  ,0x22  ,0x33  ,0x44  ,0x55  ,0x66  ,0x77  ,0x88  ,0x99  ,0xaa  ,0xbb  ,0xcc  ,0xdd  ,0xee  ,0xff};   
       
    // Copy the Key and PlainText   
    for(i=0;i<Nk*4;i++)   
    {   
        Key[i]=temp[i];   
        in[i]=temp2[i];   
    }   
  
//           *********************************************************   
  
  
  
  
// Uncomment Part 2 if you need to read Key and PlainText from the keyboard.   
//     Part 2: ********************************************************   
/*  
    //Clear the input buffer  
    flushall();  
 
    //Recieve the Key from the user  
    printf("Enter the Key in hexadecimal: ");  
    for(i=0;i<Nk*4;i++)  
    {  
        scanf("%x",&Key[i]);  
    }  
 
    printf("Enter the PlainText in hexadecimal: ");  
    for(i=0;i<Nb*4;i++)  
    {  
        scanf("%x",&in[i]);  
    }  
*/  
//             ********************************************************   
  
  
    // The KeyExpansion routine must be called before encryption.   
    KeyExpansion();   
  
    // The next function call encrypts the PlainText with the Key using AES algorithm.   
    Cipher();   
  
    // Output the encrypted text.   
    printf("\nText after encryption:\n");   
    for(i=0;i<Nb*4;i++)   
    {   
        printf("%02x ",out[i]);   
    }   
    printf("\n\n");   
}

Recommended Answers

All 11 Replies

void main()
flushall()
lol()


googling for a week?

are you exaggerating?

cause i just found it in about 30 seconds.


.

void main()
flushall()
lol()


googling for a week?

are you exaggerating?

cause i just found it in about 30 seconds.
.

Yes actually more than that. I did see that link and tried it that way but got compiler errors. I might have posted it in the Windows message loop. My background is mechanical, btw.

Hey, I know you are helping out with me, but I have to say that your quick response to making fun of me makes me think you do not like to help people. If I posted the errors returned by compiler will you look?

void main()
flushall()
lol()


googling for a week?

are you exaggerating?

cause i just found it in about 30 seconds.


.

Here are the compile errors.

c:\documents and settings\marcus.marcus\my documents\visual studio 2008\projects\aes2\aes2\aes2.cpp(344) : error C2664: 'strlen' : cannot convert parameter 1 from 'unsigned char [16]' to 'const char *'
        Types pointed to are unrelated; conversion requires reinterpret_cast, C-style cast or function-style cast
c:\documents and settings\marcus.marcus\my documents\visual studio 2008\projects\aes2\aes2\aes2.cpp(349) : error C2664: 'MultiByteToWideChar' : cannot convert parameter 3 from 'unsigned char [16]' to 'LPCSTR'
        Types pointed to are unrelated; conversion requires reinterpret_cast, C-style cast or function-style cast

Here is what I did, just replacing wpurl with in. It looks like in should be a pointer? Should I create a new pointer to convert from the unsigned char[]? Thanks for your help by the way. I am just begining unmanaged code:

int len = strlen(in)+1;
	wchar_t *wText = new wchar_t[len];
	if ( wText == 0 )
		return;
	memset(wText,0,len);
	::MultiByteToWideChar(  CP_ACP, NULL,in, -1, wText,len );

>>memset(wText,0,len);
That only sets the first half of the buffer -- what you want is memset(wText, (len * sizeof(wchar_t)); >>should I create a new pointer to convert from the unsigned char[]?
No, just typecase it: int len = strlen((const char *)in)+1

It is compiling now, but I am getting run time errors. The code is below.

What I did was paste the encryption code on the top of a new project, and created a new function, testAES(), to be called on left mouse button down. I put the memset in that function, but when I click I get the following errors:

Unhandled exception at 0x7c809dea in aes2.exe: 0xC0000005: Access violation reading location 0x00000011.

I know this a RTFM moment, and if you want to just post links to resolve that would be fine. I'm at the end of my rope again! Your help though is greatly appreciated.

// aes2.cpp : Defines the entry point for the application.
//

#include "stdafx.h"
#include "aes2.h"
#include <string>
using std::string;

#define MAX_LOADSTRING 100



// The number of columns comprising a state in AES. This is a constant in AES. Value=4
#define Nb 4

// The number of rounds in AES Cipher. It is simply initiated to zero. The actual value is recieved in the program.
int Nr=0;
string message;

// The number of 32 bit words in the key. It is simply initiated to zero. The actual value is recieved in the program.
int Nk=0;

// in - it is the array that holds the plain text to be encrypted.
// out - it is the array that holds the key for encryption.
// state - the array that holds the intermediate results during encryption.
unsigned char in[16], out[16], state[4][4];

// The array that stores the round keys.
unsigned char RoundKey[240];

// The Key input to the AES Program
unsigned char Key[32];

int getSBoxValue(int num)
{
	int sbox[256] =   {
	//0     1    2      3     4    5     6     7      8    9     A      B    C     D     E     F
	0x63, 0x7c, 0x77, 0x7b, 0xf2, 0x6b, 0x6f, 0xc5, 0x30, 0x01, 0x67, 0x2b, 0xfe, 0xd7, 0xab, 0x76, //0
	0xca, 0x82, 0xc9, 0x7d, 0xfa, 0x59, 0x47, 0xf0, 0xad, 0xd4, 0xa2, 0xaf, 0x9c, 0xa4, 0x72, 0xc0, //1
	0xb7, 0xfd, 0x93, 0x26, 0x36, 0x3f, 0xf7, 0xcc, 0x34, 0xa5, 0xe5, 0xf1, 0x71, 0xd8, 0x31, 0x15, //2
	0x04, 0xc7, 0x23, 0xc3, 0x18, 0x96, 0x05, 0x9a, 0x07, 0x12, 0x80, 0xe2, 0xeb, 0x27, 0xb2, 0x75, //3
	0x09, 0x83, 0x2c, 0x1a, 0x1b, 0x6e, 0x5a, 0xa0, 0x52, 0x3b, 0xd6, 0xb3, 0x29, 0xe3, 0x2f, 0x84, //4
	0x53, 0xd1, 0x00, 0xed, 0x20, 0xfc, 0xb1, 0x5b, 0x6a, 0xcb, 0xbe, 0x39, 0x4a, 0x4c, 0x58, 0xcf, //5
	0xd0, 0xef, 0xaa, 0xfb, 0x43, 0x4d, 0x33, 0x85, 0x45, 0xf9, 0x02, 0x7f, 0x50, 0x3c, 0x9f, 0xa8, //6
	0x51, 0xa3, 0x40, 0x8f, 0x92, 0x9d, 0x38, 0xf5, 0xbc, 0xb6, 0xda, 0x21, 0x10, 0xff, 0xf3, 0xd2, //7
	0xcd, 0x0c, 0x13, 0xec, 0x5f, 0x97, 0x44, 0x17, 0xc4, 0xa7, 0x7e, 0x3d, 0x64, 0x5d, 0x19, 0x73, //8
	0x60, 0x81, 0x4f, 0xdc, 0x22, 0x2a, 0x90, 0x88, 0x46, 0xee, 0xb8, 0x14, 0xde, 0x5e, 0x0b, 0xdb, //9
	0xe0, 0x32, 0x3a, 0x0a, 0x49, 0x06, 0x24, 0x5c, 0xc2, 0xd3, 0xac, 0x62, 0x91, 0x95, 0xe4, 0x79, //A
	0xe7, 0xc8, 0x37, 0x6d, 0x8d, 0xd5, 0x4e, 0xa9, 0x6c, 0x56, 0xf4, 0xea, 0x65, 0x7a, 0xae, 0x08, //B
	0xba, 0x78, 0x25, 0x2e, 0x1c, 0xa6, 0xb4, 0xc6, 0xe8, 0xdd, 0x74, 0x1f, 0x4b, 0xbd, 0x8b, 0x8a, //C
	0x70, 0x3e, 0xb5, 0x66, 0x48, 0x03, 0xf6, 0x0e, 0x61, 0x35, 0x57, 0xb9, 0x86, 0xc1, 0x1d, 0x9e, //D
	0xe1, 0xf8, 0x98, 0x11, 0x69, 0xd9, 0x8e, 0x94, 0x9b, 0x1e, 0x87, 0xe9, 0xce, 0x55, 0x28, 0xdf, //E
	0x8c, 0xa1, 0x89, 0x0d, 0xbf, 0xe6, 0x42, 0x68, 0x41, 0x99, 0x2d, 0x0f, 0xb0, 0x54, 0xbb, 0x16 }; //F
	return sbox[num];
}

// The round constant word array, Rcon[i], contains the values given by 
// x to th e power (i-1) being powers of x (x is denoted as {02}) in the field GF(28)
// Note that i starts at 1, not 0).
int Rcon[255] = {
	0x8d, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x1b, 0x36, 0x6c, 0xd8, 0xab, 0x4d, 0x9a, 
	0x2f, 0x5e, 0xbc, 0x63, 0xc6, 0x97, 0x35, 0x6a, 0xd4, 0xb3, 0x7d, 0xfa, 0xef, 0xc5, 0x91, 0x39, 
	0x72, 0xe4, 0xd3, 0xbd, 0x61, 0xc2, 0x9f, 0x25, 0x4a, 0x94, 0x33, 0x66, 0xcc, 0x83, 0x1d, 0x3a, 
	0x74, 0xe8, 0xcb, 0x8d, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x1b, 0x36, 0x6c, 0xd8, 
	0xab, 0x4d, 0x9a, 0x2f, 0x5e, 0xbc, 0x63, 0xc6, 0x97, 0x35, 0x6a, 0xd4, 0xb3, 0x7d, 0xfa, 0xef, 
	0xc5, 0x91, 0x39, 0x72, 0xe4, 0xd3, 0xbd, 0x61, 0xc2, 0x9f, 0x25, 0x4a, 0x94, 0x33, 0x66, 0xcc, 
	0x83, 0x1d, 0x3a, 0x74, 0xe8, 0xcb, 0x8d, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x1b, 
	0x36, 0x6c, 0xd8, 0xab, 0x4d, 0x9a, 0x2f, 0x5e, 0xbc, 0x63, 0xc6, 0x97, 0x35, 0x6a, 0xd4, 0xb3, 
	0x7d, 0xfa, 0xef, 0xc5, 0x91, 0x39, 0x72, 0xe4, 0xd3, 0xbd, 0x61, 0xc2, 0x9f, 0x25, 0x4a, 0x94, 
	0x33, 0x66, 0xcc, 0x83, 0x1d, 0x3a, 0x74, 0xe8, 0xcb, 0x8d, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 
	0x40, 0x80, 0x1b, 0x36, 0x6c, 0xd8, 0xab, 0x4d, 0x9a, 0x2f, 0x5e, 0xbc, 0x63, 0xc6, 0x97, 0x35, 
	0x6a, 0xd4, 0xb3, 0x7d, 0xfa, 0xef, 0xc5, 0x91, 0x39, 0x72, 0xe4, 0xd3, 0xbd, 0x61, 0xc2, 0x9f, 
	0x25, 0x4a, 0x94, 0x33, 0x66, 0xcc, 0x83, 0x1d, 0x3a, 0x74, 0xe8, 0xcb, 0x8d, 0x01, 0x02, 0x04, 
	0x08, 0x10, 0x20, 0x40, 0x80, 0x1b, 0x36, 0x6c, 0xd8, 0xab, 0x4d, 0x9a, 0x2f, 0x5e, 0xbc, 0x63, 
	0xc6, 0x97, 0x35, 0x6a, 0xd4, 0xb3, 0x7d, 0xfa, 0xef, 0xc5, 0x91, 0x39, 0x72, 0xe4, 0xd3, 0xbd, 
	0x61, 0xc2, 0x9f, 0x25, 0x4a, 0x94, 0x33, 0x66, 0xcc, 0x83, 0x1d, 0x3a, 0x74, 0xe8, 0xcb  };

// This function produces Nb(Nr+1) round keys. The round keys are used in each round to encrypt the states. 
void KeyExpansion()
{
	int i,j;
	unsigned char temp[4],k;
	
	// The first round key is the key itself.
	for(i=0;i<Nk;i++)
	{
		RoundKey[i*4]=Key[i*4];
		RoundKey[i*4+1]=Key[i*4+1];
		RoundKey[i*4+2]=Key[i*4+2];
		RoundKey[i*4+3]=Key[i*4+3];
	}

	// All other round keys are found from the previous round keys.
	while (i < (Nb * (Nr+1)))
	{
					for(j=0;j<4;j++)
					{
						temp[j]=RoundKey[(i-1) * 4 + j];
					}
					if (i % Nk == 0)
					{
						// This function rotates the 4 bytes in a word to the left once.
						// [a0,a1,a2,a3] becomes [a1,a2,a3,a0]

						// Function RotWord()
						{
							k = temp[0];
							temp[0] = temp[1];
							temp[1] = temp[2];
							temp[2] = temp[3];
							temp[3] = k;
						}

						// SubWord() is a function that takes a four-byte input word and 
						// applies the S-box to each of the four bytes to produce an output word.

						// Function Subword()
						{
							temp[0]=getSBoxValue(temp[0]);
							temp[1]=getSBoxValue(temp[1]);
							temp[2]=getSBoxValue(temp[2]);
							temp[3]=getSBoxValue(temp[3]);
						}

						temp[0] =  temp[0] ^ Rcon[i/Nk];
					}
					else if (Nk > 6 && i % Nk == 4)
					{
						// Function Subword()
						{
							temp[0]=getSBoxValue(temp[0]);
							temp[1]=getSBoxValue(temp[1]);
							temp[2]=getSBoxValue(temp[2]);
							temp[3]=getSBoxValue(temp[3]);
						}
					}
					RoundKey[i*4+0] = RoundKey[(i-Nk)*4+0] ^ temp[0];
					RoundKey[i*4+1] = RoundKey[(i-Nk)*4+1] ^ temp[1];
					RoundKey[i*4+2] = RoundKey[(i-Nk)*4+2] ^ temp[2];
					RoundKey[i*4+3] = RoundKey[(i-Nk)*4+3] ^ temp[3];
					i++;
	}
}

// This function adds the round key to state.
// The round key is added to the state by an XOR function.
void AddRoundKey(int round) 
{
	int i,j;
	for(i=0;i<4;i++)
	{
		for(j=0;j<4;j++)
		{
			state[j][i] ^= RoundKey[round * Nb * 4 + i * Nb + j];
		}
	}
}

// The SubBytes Function Substitutes the values in the
// state matrix with values in an S-box.
void SubBytes()
{
	int i,j;
	for(i=0;i<4;i++)
	{
		for(j=0;j<4;j++)
		{
			state[i][j] = getSBoxValue(state[i][j]);

		}
	}
}

// The ShiftRows() function shifts the rows in the state to the left.
// Each row is shifted with different offset.
// Offset = Row number. So the first row is not shifted.
void ShiftRows()
{
	unsigned char temp;

	// Rotate first row 1 columns to left	
	temp=state[1][0];
	state[1][0]=state[1][1];
	state[1][1]=state[1][2];
	state[1][2]=state[1][3];
	state[1][3]=temp;

	// Rotate second row 2 columns to left	
	temp=state[2][0];
	state[2][0]=state[2][2];
	state[2][2]=temp;

	temp=state[2][1];
	state[2][1]=state[2][3];
	state[2][3]=temp;

	// Rotate third row 3 columns to left
	temp=state[3][0];
	state[3][0]=state[3][3];
	state[3][3]=state[3][2];
	state[3][2]=state[3][1];
	state[3][1]=temp;
}

// xtime is a macro that finds the product of {02} and the argument to xtime modulo {1b}  
#define xtime(x)   ((x<<1) ^ (((x>>7) & 1) * 0x1b))

// MixColumns function mixes the columns of the state matrix
void MixColumns()
{
	int i;
	unsigned char Tmp,Tm,t;
	for(i=0;i<4;i++)
	{	
		t=state[0][i];
		Tmp = state[0][i] ^ state[1][i] ^ state[2][i] ^ state[3][i] ;
		Tm = state[0][i] ^ state[1][i] ; Tm = xtime(Tm); state[0][i] ^= Tm ^ Tmp ;
		Tm = state[1][i] ^ state[2][i] ; Tm = xtime(Tm); state[1][i] ^= Tm ^ Tmp ;
		Tm = state[2][i] ^ state[3][i] ; Tm = xtime(Tm); state[2][i] ^= Tm ^ Tmp ;
		Tm = state[3][i] ^ t ; Tm = xtime(Tm); state[3][i] ^= Tm ^ Tmp ;
	}
}

// Cipher is the main function that encrypts the PlainText.
void Cipher()
{
	int i,j,round=0;

	//Copy the input PlainText to state array.
	for(i=0;i<4;i++)
	{
		for(j=0;j<4;j++)
		{
			state[j][i] = in[i*4 + j];
		}
	}

	// Add the First round key to the state before starting the rounds.
	AddRoundKey(0); 
	
	// There will be Nr rounds.
	// The first Nr-1 rounds are identical.
	// These Nr-1 rounds are executed in the loop below.
	for(round=1;round<Nr;round++)
	{
		SubBytes();
		ShiftRows();
		MixColumns();
		AddRoundKey(round);
	}
	
	// The last round is given below.
	// The MixColumns function is not here in the last round.
	SubBytes();
	ShiftRows();
	AddRoundKey(Nr);

	// The encryption process is over.
	// Copy the state array to output array.
	for(i=0;i<4;i++)
	{
		for(j=0;j<4;j++)
		{
			out[i*4+j]=state[j][i];
		}
	}
}

std::wstring s2ws(const std::string& s){  
	int len;
	int slength = (int)s.length() + 1;
	len = MultiByteToWideChar(CP_ACP, 0, s.c_str(), slength, 0, 0);
	wchar_t* buf = new wchar_t[len];
	MultiByteToWideChar(CP_ACP, 0, s.c_str(), slength, buf, len);
	std::wstring r(buf);
	delete[] buf;
	return r;
}

void testAES()
{
	int i;

	/*// Recieve the length of key here.
	while(Nr!=128 && Nr!=192 && Nr!=256)
	{
		printf("Enter the length of Key(128, 192 or 256 only): ");
		scanf("%d",&Nr);
	}*/
	Nr=128;
	
	// Calculate Nk and Nr from the recieved value.
	Nk = Nr / 32;
	Nr = Nk + 6;



// Part 1 is for demonstrative purpose. The key and plaintext are given in the program itself.
// 	Part 1: ********************************************************

	// The array temp stores the key.
	// The array temp2 stores the plaintext.
	unsigned char temp[32] = {0x00,0x01,0x02,0x03,0x04,0x05,0x06,0x07,0x08,0x09,0x0a,0x0b,0x0c,0x0d,0x0e,0x0f};
	unsigned char temp2[32]= {0x00,0x11,0x22,0x33,0x44,0x55,0x66,0x77,0x88,0x99,0xaa,0xbb,0xcc,0xdd,0xee,0xff};
	// Copy the Key and PlainText
	for(i=0;i<Nk*4;i++)
	{
		Key[i]=temp[i];
		in[i]=temp2[i];
	}

//	       *********************************************************




// Uncomment Part 2 if you need to read key and plaintext from the keyboard.
// 	Part 2: ********************************************************
/*
	//Clear the input buffer
	flushall();

	//Recieve the key from the user
	printf("Enter the Key in hexadecimal: ");
	for(i=0;i<Nk*4;i++)
	{
		scanf("%x",&Key[i]);
	}

	printf("Enter the PlainText in hexadecimal: ");
	for(i=0;i<Nb*4;i++)
	{
		scanf("%x",&in[i]);
	}
*/
// 	        ********************************************************


	// The KeyExpansion routine must be called before encryption.
	KeyExpansion();

	// The next function call encrypts the PlainText with the Key using AES algorithm.
	Cipher();
	int len = strlen((const char *)in)+1;
	wchar_t *wText = new wchar_t[len];
	memset(wText,0, (len * sizeof(wchar_t)));
  if ( wText == 0 )
    return;
  ::MultiByteToWideChar(  CP_ACP, NULL,(LPCSTR)in[1], -1, wText,len );



	MessageBox(
        NULL,
		wText,
		L"test",
		MB_ICONWARNING | MB_CANCELTRYCONTINUE | MB_DEFBUTTON2
    );
	// Output the encrypted text.
	/*printf("\nText after encryption:\n");
	for(i=0;i<Nb*4;i++)
	{
		printf("%02x ",out[i]);
	}
	printf("\n\n");*/
}







// Global Variables:
HINSTANCE hInst;								// current instance
TCHAR szTitle[MAX_LOADSTRING];					// The title bar text
TCHAR szWindowClass[MAX_LOADSTRING];			// the main window class name

// Forward declarations of functions included in this code module:
ATOM				MyRegisterClass(HINSTANCE hInstance);
BOOL				InitInstance(HINSTANCE, int);
LRESULT CALLBACK	WndProc(HWND, UINT, WPARAM, LPARAM);
INT_PTR CALLBACK	About(HWND, UINT, WPARAM, LPARAM);

int APIENTRY _tWinMain(HINSTANCE hInstance,
                     HINSTANCE hPrevInstance,
                     LPTSTR    lpCmdLine,
                     int       nCmdShow)
{
	UNREFERENCED_PARAMETER(hPrevInstance);
	UNREFERENCED_PARAMETER(lpCmdLine);

 	// TODO: Place code here.
	MSG msg;
	HACCEL hAccelTable;

	// Initialize global strings
	LoadString(hInstance, IDS_APP_TITLE, szTitle, MAX_LOADSTRING);
	LoadString(hInstance, IDC_AES2, szWindowClass, MAX_LOADSTRING);
	MyRegisterClass(hInstance);

	// Perform application initialization:
	if (!InitInstance (hInstance, nCmdShow))
	{
		return FALSE;
	}

	hAccelTable = LoadAccelerators(hInstance, MAKEINTRESOURCE(IDC_AES2));

	// Main message loop:
	while (GetMessage(&msg, NULL, 0, 0))
	{
		if (!TranslateAccelerator(msg.hwnd, hAccelTable, &msg))
		{
			TranslateMessage(&msg);
			DispatchMessage(&msg);
		}
	}

	return (int) msg.wParam;
}



//
//  FUNCTION: MyRegisterClass()
//
//  PURPOSE: Registers the window class.
//
//  COMMENTS:
//
//    This function and its usage are only necessary if you want this code
//    to be compatible with Win32 systems prior to the 'RegisterClassEx'
//    function that was added to Windows 95. It is important to call this function
//    so that the application will get 'well formed' small icons associated
//    with it.
//
ATOM MyRegisterClass(HINSTANCE hInstance)
{
	WNDCLASSEX wcex;

	wcex.cbSize = sizeof(WNDCLASSEX);

	wcex.style			= CS_HREDRAW | CS_VREDRAW;
	wcex.lpfnWndProc	= WndProc;
	wcex.cbClsExtra		= 0;
	wcex.cbWndExtra		= 0;
	wcex.hInstance		= hInstance;
	wcex.hIcon			= LoadIcon(hInstance, MAKEINTRESOURCE(IDI_AES2));
	wcex.hCursor		= LoadCursor(NULL, IDC_ARROW);
	wcex.hbrBackground	= (HBRUSH)(COLOR_WINDOW+1);
	wcex.lpszMenuName	= MAKEINTRESOURCE(IDC_AES2);
	wcex.lpszClassName	= szWindowClass;
	wcex.hIconSm		= LoadIcon(wcex.hInstance, MAKEINTRESOURCE(IDI_SMALL));

	return RegisterClassEx(&wcex);
}

//
//   FUNCTION: InitInstance(HINSTANCE, int)
//
//   PURPOSE: Saves instance handle and creates main window
//
//   COMMENTS:
//
//        In this function, we save the instance handle in a global variable and
//        create and display the main program window.
//
BOOL InitInstance(HINSTANCE hInstance, int nCmdShow)
{
   HWND hWnd;

   hInst = hInstance; // Store instance handle in our global variable

   hWnd = CreateWindow(szWindowClass, szTitle, WS_OVERLAPPEDWINDOW,
      CW_USEDEFAULT, 0, CW_USEDEFAULT, 0, NULL, NULL, hInstance, NULL);

   if (!hWnd)
   {
      return FALSE;
   }

   ShowWindow(hWnd, nCmdShow);
   UpdateWindow(hWnd);

   return TRUE;
}

//
//  FUNCTION: WndProc(HWND, UINT, WPARAM, LPARAM)
//
//  PURPOSE:  Processes messages for the main window.
//
//  WM_COMMAND	- process the application menu
//  WM_PAINT	- Paint the main window
//  WM_DESTROY	- post a quit message and return
//
//
LRESULT CALLBACK WndProc(HWND hWnd, UINT message, WPARAM wParam, LPARAM lParam)
{
	int wmId, wmEvent;
	PAINTSTRUCT ps;
	HDC hdc;

	switch (message)
	{
	case WM_LBUTTONDOWN:    // <-
		testAES();
	break;

	case WM_COMMAND:
		wmId    = LOWORD(wParam);
		wmEvent = HIWORD(wParam);
		// Parse the menu selections:
		switch (wmId)
		{
		case IDM_ABOUT:
			DialogBox(hInst, MAKEINTRESOURCE(IDD_ABOUTBOX), hWnd, About);
			break;
		case IDM_EXIT:
			DestroyWindow(hWnd);
			break;
		default:
			return DefWindowProc(hWnd, message, wParam, lParam);
		}
		break;
	case WM_PAINT:
		hdc = BeginPaint(hWnd, &ps);
		// TODO: Add any drawing code here...
		EndPaint(hWnd, &ps);
		break;
	case WM_DESTROY:
		PostQuitMessage(0);
		break;
	default:
		return DefWindowProc(hWnd, message, wParam, lParam);
	}
	return 0;
}

// Message handler for about box.
INT_PTR CALLBACK About(HWND hDlg, UINT message, WPARAM wParam, LPARAM lParam)
{
	UNREFERENCED_PARAMETER(lParam);
	switch (message)
	{
	case WM_INITDIALOG:
		return (INT_PTR)TRUE;

	case WM_COMMAND:
		if (LOWORD(wParam) == IDOK || LOWORD(wParam) == IDCANCEL)
		{
			EndDialog(hDlg, LOWORD(wParam));
			return (INT_PTR)TRUE;
		}
		break;
	}
	return (INT_PTR)FALSE;
}

Don't pin in the whole code every time.Just extract the erroneous part,that way you too will dive deeper into the code and easy for us to analyze too

I thought all the console stuff was commented out? This isn't stdin, is it?

std::wstring r(buf);

Could you tell me what line you see the console stuff at? It should be commented.

Why you use (LPCSTR)in[1] (third argument of MultiByteToWideChar)?

int len = strlen((const char *)in)+1;
  wchar_t *wText = new wchar_t[len];
  memset(wText,0, (len * sizeof(wchar_t)));
  if ( wText == 0 )
       return 0;
  ::MultiByteToWideChar(  CP_ACP, NULL,(LPCSTR)in[1], -1, wText,len );

It should be,

(LPCSTR)in
  // or
  (const char *)in

I thought all the console stuff was commented out? This isn't stdin, is it?

std::wstring r(buf);

Could you tell me what line you see the console stuff at? It should be commented.

No -- what you posted is C++, not C. C doesn't know a thing about STL.

Hello:
Anyone know of an easy way to cast the unsigned char in[16] in the below code to an LPCWSTR using just the CRT? I tried swprintf but it wasn't working. I've been googling this for a week and appreciate the help.

Sorry but I should have mentioned this before. Why did it take you over a week to come up this this simple solution? Note that "%S" (capital S) will convert from char* to wchar_t*. There are, of course, other functions that will also do the conversion.

int main(void)
{
    char world[] = "Hello World";
    wchar_t wworld[40];
    swprintf(wworld, L"%S", world);

    return 0;
}
Be a part of the DaniWeb community

We're a friendly, industry-focused community of developers, IT pros, digital marketers, and technology enthusiasts meeting, networking, learning, and sharing knowledge.