crodriguez08 0 Light Poster

Hey there, I'm having trouble figuring out the next step of my program. What I'm trying to do is make a function that will add two polynomials, and I don't know how to exactly fix it. My first question would be if the Polynomial operator+ function is right, or whether it needs some fixing. Any hints or advice would be appreciated. Here's my code:

/*-- Polynomial.h ---------------------------------------------------------
 Defines the monomial and polynomial classes. Polynomial is implemented
 basically as a list of monomials.
---------------------------------------------------------------------------*/

#include <iostream>

#ifndef PNOM
#define PNOM

const int CAPACITY = 1024;
//typedef int ElementType;

class Monomial {
private:
	float coef;
	int		exp;
public:
	Monomial(){};
	/*----------------------------------------------------------------------
	 Construct a Monomial object.
	 
	 Precondition:  None
	 Postcondition: An empty Monomial object has been constructed..
   -----------------------------------------------------------------------*/
	Monomial(float c,int p) { coef = c; exp = p;};
	/*----------------------------------------------------------------------
	 Construct a Monomial object with specified coeffient and exponent.
	 
	 Precondition:  None
	 Postcondition: A Monomial object has been constructed with the 
                  specified coeffient and exponent.
   -----------------------------------------------------------------------*/
	friend Monomial operator+ (Monomial &, Monomial &);
	/*----------------------------------------------------------------------
	 Overloading the operator+ so we can sum two monomials.
	 
	 Precondition:  The monomials have the same exponent.
	 Postcondition: A Monomial object has been created and returned.
   -----------------------------------------------------------------------*/
	friend ostream & operator<< (ostream & out, const Monomial & mono);	
	/*----------------------------------------------------------------------
	 Overloading the OUTPUT operator for Monomials. 
	 
	 Precondition:  None.
	 Postcondition: The coefficient and exponent (if != 0) of the monomial are 
	                displayed in the default output device.
   -----------------------------------------------------------------------*/
};

typedef Monomial ElementType;

class Polynomial
{
 public:

   Polynomial();
   /*----------------------------------------------------------------------
     Construct a List object.

     Precondition:  None
     Postcondition: An empty List object has been constructed; mySize is 0.
   -----------------------------------------------------------------------*/

   /***** empty operation *****/
   bool empty() const;
   /*----------------------------------------------------------------------
     Check if a list is empty.

     Precondition:  None
     Postcondition: true is returned if the list is empty, false if not.
   -----------------------------------------------------------------------*/

   /***** insert and erase *****/
   void insert(ElementType item, int pos);
   /*----------------------------------------------------------------------
     Insert a value into the list at a given position.

     Precondition:  item is the value to be inserted; there is room in
         the array (mySize < CAPACITY); and the position satisfies
         0 <= pos <= mySize. 
     Postcondition: item has been inserted into the list at the position
         determined by pos (provided there is room and pos is a legal
         position).
   -----------------------------------------------------------------------*/

   void erase(int pos);
   /*----------------------------------------------------------------------
     Remove a value from the list at a given position.

     Precondition:  The list is not empty and the position satisfies
         0 <= pos < mySize.
     Postcondition: element at the position determined by pos has been
         removed (provided pos is a legal position).
   ----------------------------------------------------------------------*/

   /***** output *****/
   void display(ostream & out) const;
   /*----------------------------------------------------------------------
     Display a list.

     Precondition:  The ostream out is open. 
     Postcondition: The list represented by this List object has been
         inserted into out. 
   -----------------------------------------------------------------------*/

friend Polynomial operator+(Polynomial &, Polynomial &);
Polynomial SubstractPoly(Polynomial &);
Polynomial MultiplyPoly(Polynomial &);


 private:
   int mySize;                     // current size of list stored in myArray
   ElementType myArray[CAPACITY];  // array to store the Monomials

}; //--- end of List class

//------ Prototype of output operator
ostream & operator<< (ostream & out, const Polynomial & p);

#endif
/*-- Polynomial.cpp------------------------------------------------------------
 
   This file implements List member functions.

-------------------------------------------------------------------------*/

#include <cassert>
using namespace std;

#include "Polynomial.h"


/*----------------------------------------------------------------------
 Member and friend functions for Monomial.
 -----------------------------------------------------------------------*/

Monomial operator+ (Monomial& a, Monomial& b) {
	Monomial res;
	res.coef	= a.coef + b.coef;
	res.exp	= a.exp;
	return res;
}


ostream & operator<< (ostream & out, const Monomial & mono)
{
	out << mono.coef ;
	if (mono.exp > 0) out << "x^" << mono.exp; 
	return out;
}


/*----------------------------------------------------------------------
 Member and friend functions for Polinomial.
 -----------------------------------------------------------------------*/

Polynomial::Polynomial()                 
: mySize(0)
{}


bool Polynomial::empty() const
{
   return mySize == 0;
}


void Polynomial::display(ostream & out) const
{
	for (int i = mySize-1; i >= 0 ; i--) {
		if (i != mySize-1) out << " + ";
		out << myArray[i];
	}

}


ostream & operator<< (ostream & out, const Polynomial & aList)
{
   aList.display(out);
   return out;
}


void Polynomial::insert(ElementType item, int pos)
{
   if (mySize == CAPACITY)
   {
      cerr << "*** No space for list element -- terminating "
              "execution ***\n";
      exit(1);
   }
   if (pos < 0 || pos > mySize)
   {
      cerr << "*** Illegal location to insert -- " << pos 
           << ".  List unchanged. ***\n";
      return;
   }

   // First shift array elements right to make room for item

   for(int i = mySize; i > pos; i--)
      myArray[i] = myArray[i - 1];

   // Now insert item at position pos and increase list size  
   myArray[pos] = item;
   mySize++;
}


void Polynomial::erase(int pos)
{
   if (mySize == 0)
   {
      cerr << "*** List is empty ***\n";
      return;
   }
   if (pos < 0 || pos >= mySize)
   {
      cerr << "Illegal location to delete -- " << pos
           << ".  List unchanged. ***\n";
      return;
   }

   // Shift array elements left to close the gap
   for(int i = pos; i < mySize; i++)
       myArray[i] = myArray[i + 1];

   // Decrease list size
    mySize--;
}


Polynomial operator+(Polynomial &p1, Polynomial &p2){
	Polynomial res;
	Monomial resP;
	int i = 0;
	
	if(p1.exp == p2.exp)
		resP.coef = p1.coef + p2.coef;

	for(i = 0; i < p1.mySize; i++){
		resP.myArray[i] = p1.myArray[i] + p2.myArray;
	}
	res.mySize = p1.mySize + p2.mySize;

	return res;

}


/*
Polynomial Polynomial::SubstractPolynomials(Polynomial &p){
	Polynomial res;

	for(int i = 0; i < mySize; i++){
		res.myArray[i] = myArray[i];
	}
	for(int j = 0; j < p.mySize; j++){
		res.myArray[j+i] = p.myArray[j];
	}
	res.p3 = mySize - p.mySize;

	return res;
}

Polynomial Polynomial::MultiplyPolynomials(Polynomial &p){
	Polynomial res;

	for(int i = 0; i < mySize; i++){
		res.myArray[i] = myArray[i];
	}
	for(int j = 0; j < p.mySize; j++){
		res.myArray[j+i] = p.myArray[j];
	}
	res.p3 = mySize * p.mySize;

	return res;
}*/
Be a part of the DaniWeb community

We're a friendly, industry-focused community of 1.21 million developers, IT pros, digital marketers, and technology enthusiasts learning and sharing knowledge.