0

**A newbie would appreciate if someone could give him a pseudocode or any kind of explanation for the part of the code where the actual algorithm for matrix determinant is written.**

```
using System;
namespace Determinant
{
class Program
{
public static double DET(int n, double[,] Mat)
{
double d = 0;
int k, i, j, subi, subj;
double[,] SUBMat = new double[n, n];
if (n == 2)
{
return ((Mat[0, 0] * Mat[1, 1]) - (Mat[1, 0] * Mat[0, 1]));
}
else
{
for(k = 0; k<n; k++)
{
subi = 0;
for(i = 1; i<n; i++)
{
subj = 0;
for(j = 0; j<n; j++)
{
if (j == k)
{
continue;
}
SUBMat[subi,subj] = Mat[i,j];
subj++;
}
subi++;
}
d = d + (Math.Pow(-1 , k) * Mat[0,k] * DET(n - 1 , SUBMat));
}
}
return d;
}
static void Main(string[] args)
{
int n;
Console.WriteLine("Matrix dimension:");
n = int.Parse(Console.ReadLine());
double[,] Mat = new double[n,n];
int i, j;
Console.WriteLine("Matrix elements: ");
for (i = 0; i < n; i++)
{
for (j = 0; j < n; j++)
{
Console.Write("M[{0},{1}] = ", i, j);
Mat[i, j] = int.Parse(Console.ReadLine());
}
}
Console.WriteLine("\n");
Console.WriteLine("Your Matrix:");
for (i = 0; i < Mat.GetLength(0); i++)
{
for (j = 0; j < Mat.GetLength(1); j++)
{
Console.Write(" " + Mat[i, j]);
}
Console.WriteLine();
Console.ReadKey();
}
Console.WriteLine("Determinant: " + DET(n, Mat));
Console.ReadKey(); ;
}
}
}
```

*Edited
by Anel_1*