Another translation of one of my Python snippets. This function will return a slice of consecutive prime numbers from 2 to a given value limit. In Go the 'int' type (int32) will go as high as 2147483647, but you can replace 'int' with 'uint64' and go as high as 18446744073709551615.

591 Views
// prime_slice2.go
//
// get a slice of primes from 2 to a given value limit
//
// info on numeric limits:
// https://golang.org/ref/spec#Numeric_types
// int or int32, signed 32-bit integer (-2147483648 to 2147483647)
// uint64 is unsigned 64-bit integer (0 to 18446744073709551615)
//
// online play at:
// http://play.golang.org/p/sUT0Npic9y
//
// tested with Go version 1.4.2   by vegaseat  5may2015

package main

import "fmt"

// return a slice of primes from 2 to limit (inclusive)
// uses Sieve of Eratosthenes algorithm
func primes_dns(limit int) []int {
	limit = limit + 1
	// creates a slice of false with length of limit
	bools := make([]bool, limit)
	// implies up to the sqrt of limit
	for k := 2; k*k <= limit; k++ {
		if bools[k] != true {
			for ix := k * k; ix < limit; ix += k {
				bools[ix] = true
			}
		}
	}
	// index of remaining False in bools = a prime number
	primes := []int{}
	for ix := 2; ix < limit; ix++ {
		if bools[ix] != true {
			primes = append(primes, ix)
		}
	}
	return primes
}

func main() {
	fmt.Println("A slice of prime numbers:")

	prime_slice := primes_dns(67)
	fmt.Printf("%v\n", prime_slice)

	fmt.Println("----------------------------------------------")
	fmt.Println("Let's get a larger slice of 10,000,000 primes:")
	prime_slice2 := primes_dns(10000000)
	size := len(prime_slice2)
	fmt.Printf("There are %v primenumbers in the slice\n", size)
	// use slicing to look at select portions of the slice of primes
	// in Go slicing uses [start_index:end_index(exclusive)] syntax
	fmt.Printf("First 10 primes: %v\n", prime_slice2[0:10])
	fmt.Printf("Last 5 primes: %v\n", prime_slice2[size-5:size])
}

/*
A slice of prime numbers:
[2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59 61 67]
----------------------------------------------
Let's get a larger slice of 10,000,000 primes:
There are 664579 primenumbers in the slice
First 10 primes: [2 3 5 7 11 13 17 19 23 29]
Last 5 primes: [9999937 9999943 9999971 9999973 9999991]
*/
About the Author

Scientist