Short snippet in C# to do this classic trick, I could not find one on the web. Little, (even none!) error checking is done here.

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

namespace Horner
{
    class Program
    {
        //here it all happens
        static double Horner(double[] coeffients, int degree, double value)
        {
            double result = coeffients[degree];
            for (int i = degree - 1; i >= 0; i--)
            {
                result = result * value + coeffients[i];
            }
            return result;
        }


        //Main function to exercise the above
        static void Main(string[] args)
        {
            //coefficient array
            double[] c = {0,0,0,0,0,0,0,0,0,0,0};   //degree 10 maximum
            //highest degree
            int d;
            //value to be evaluated
            double v;
            Console.WriteLine("HORNER polynomial evaluator.");
            Console.WriteLine();
            Console.Write("Enter degree of polynomial: ");
            d = Convert.ToInt32(Console.ReadLine());
            Console.WriteLine("Fill in coefficients from low to high degree.");
            Console.WriteLine("Coefficients, a[0], a[1], ..., a[" + d.ToString() + "]");
            for (int i = 0; i <= d; i++)
            {
                Console.Write("Coefficient a[" + i.ToString() + "] = ");
                c[i] = Convert.ToDouble(Console.ReadLine());
            }
            Console.Write("Enter the value to be evaluated: ");
            v = Convert.ToDouble(Console.ReadLine());

            double r = Horner(c, d, v);
            Console.WriteLine("------------------------------------------------");
            Console.WriteLine("The calculated value for this polynomial is : {0}",r);

        }
    }
}

I found here "good" source code in c# for Horner scheme:

private IEnumerable<int> getDivisors(int n)
{
    if (n == 0)
        return (IEnumerable<int>)new int[] { 0 };
    else
        return Enumerable.Range(-Math.Abs(n), 2 * Math.Abs(n) + 1)
            .Where(a => a != 0)
            .Where(a => (n % a) == 0);
}
private bool findRootWithHornerScheme(int[] coefficientsA, int x, out int[] coefficientsB)
{
    var lenght = coefficientsA.Length;
    var tmpB = new int[lenght];
    coefficientsB = new int[lenght - 1];
    tmpB[0] = coefficientsA[0];
    for (int i = 1; i < lenght; i++)
    {
        tmpB[i] = tmpB[i - 1] * x + coefficientsA[i];
    }
    //ak je posledny koefiecient B == 0 ,tak zadane x je korenom polynomu
    if (tmpB[lenght - 1] == 0)
    {
        Array.Copy(tmpB, coefficientsB, lenght - 1);
        return true;//bol najdeny koren
    }
    //nebol najdeny koren a metoda vrati false
    return false;
}
commented: Nice! +15

There is also an implementation at Rosetta code. It is very short, but I haven't used C# for a long time, so I don't know if it is good.

commented: Thanks for the tip. :) +15

My version was before LINQ was introduced in C#. The Rosetta code version uses LINQ in an excellent way.