Below is my code:

```
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <iostream>
using namespace std;
/////////////////////////////////////////////////////////////////////////
/*
// struct Edge
// Represent one edge in the graph. Fields contain
// two vertex numbers and a weight.
*/
struct Edge
{
int vertex_1, vertex_2, weight;
};
////////////////////////////////////////////////////////////////////////
/*
// struct Graph
// Represents a weighted graph. Fields contain the # of vertices,
// edges,an array of edges, along with it's physical size.
*/
struct Graph
{
// V-> Number of vertices, E-> Number of edges
int V, E;
// graph is represented as an array of edges. Since the graph is
// undirected, the edge from vertex_1 to vertex_2 is also edge from vertex_2
// to vertex_1. Both are counted as 1 edge here.
struct Edge* edge;
};
//////////////////////////////////////////////////////////////////////////
/*
// manifestGraph
// Represents a graph with vertices and no edges.
*/
struct Graph* manifestGraph(int V, int E)
{
struct Graph* graph = (struct Graph*) malloc(sizeof(struct Graph));
graph->V = V;
graph->E = E;
graph->edge = (struct Edge*) malloc(graph->E * sizeof( struct Edge));
return graph;
};
/////////////////////////////////////////////////////////////////////////
// A structure to represent a subset for union-find
struct subset
{
int parent;
int rank;
};
////////////////////////////////////////////////////////////////////////
// A utility function to find set of an element i
// (uses path compression technique)
int find(struct subset subsets[], int i)
{
// find root and make root as parent of i (path compression)
if (subsets[i].parent != i)
subsets[i].parent = find(subsets, subsets[i].parent);
return subsets[i].parent;
}
///////////////////////////////////////////////////////////////////////
// A function that does union of two sets of x and y
// (uses union by rank)
void Union(struct subset subsets[], int x, int y)
{
int xroot = find(subsets, x);
int yroot = find(subsets, y);
// Attach smaller rank tree under root of high rank tree
// (Union by Rank)
if (subsets[xroot].rank < subsets[yroot].rank)
subsets[xroot].parent = yroot;
else if (subsets[xroot].rank > subsets[yroot].rank)
subsets[yroot].parent = xroot;
// If ranks are same, then make one as root and increment
// its rank by one
else
{
subsets[yroot].parent = xroot;
subsets[xroot].rank++;
}
}
///////////////////////////////////////////////////////////////////////////
// Compare two edges according to their weights.
// Used in qsort() for sorting an array of edges
int myComp(const void* a, const void* b)
{
struct Edge* a1 = (struct Edge*)a;
struct Edge* b1 = (struct Edge*)b;
return a1->weight > b1->weight;
}
//////////////////////////////////////////////////////////////////////////
// The main function to construct MST using Kruskal's algorithm
void KruskalMST(struct Graph* graph)
{
int V = graph->V;
struct Edge result[V]; // Tnis will store the resultant MST
int e = 0; // An index variable, used for result[]
int i = 0; // An index variable, used for sorted edges
// Step 1: Sort all the edges in non-decreasing order of their weight
// If we are not allowed to change the given graph, we can create a copy of
// array of edges
qsort(graph->edge, graph->E, sizeof(graph->edge[0]), myComp);
// Allocate memory for creating V ssubsets
struct subset *subsets =
(struct subset*) malloc( V * sizeof(struct subset) );
// Create V subsets with single elements
for (int v = 0; v < V; ++v)
{
subsets[v].parent = v;
subsets[v].rank = 0;
}
// Number of edges to be taken is equal to V-1
while (e < V - 1)
{
// Step 2: Pick the smallest edge. And increment the index
// for next iteration
struct Edge next_edge = graph->edge[i++];
int x = find(subsets, next_edge.vertex_1);
int y = find(subsets, next_edge.vertex_2);
// If including this edge does't cause cycle, include it
// in result and increment the index of result for next edge
if (x != y)
{
result[e++] = next_edge;
Union(subsets, x, y);
}
// Else discard the next_edge
}
// print the contents of result[] to display the built MST
printf("Following are the edges in the constructed MST\n");
for (i = 0; i < e; ++i)
printf("%d -- %d == %d\n", result[i].vertex_1,
result[i].vertex_2, result[i].weight);
return;
}
//////////////////////////////////////////////////////////////////////////
// Driver program to test above functions
int main()
{
return 0;
}
```

I"m trying to get it to print out like the example in this link:

http://www.cs.ecu.edu/~karl/2530/spr17/Assn/Assn4/assn4.html

where is states functional requirements. Can anyone help me with this?

v/r