Hello! I'm trying to transform working Python code to Matlab code. It's Simpson's rule. But MatLab code is not working. What should I change for in this code?

Python:

from math import sin

def f(x):
    return ((0.6369)*sin(sin(x))*sin(x))

def method_simpson_compost(f,a,b,n):

    h  = (float(b)-a)/n
    i   = 0
    fks = 0.0
    while i<=n:
        xk = a+i*h
        if i==0 or i==n:
            fk = f(xk)
        elif i%2 == 1:
            fk = 4*f(xk)
        else:
            fk = 2*f(xk)
        fks += fk
        i += 1
    return (h/3)*fks
print method_simpson_compost(f, 0, 1.57, 10)

MatLab code:

file-function "f.m":

function func = f(z, x)
f = ((0.6369).*sin(z.*sin(x)).*sin(x))

file-function "s.m":

function simpson = s(f, a, b, n)
h  = (b-a)/n;
i   = 0;
fks = 0.0;
while (i<=n)
    xk = a+i*h;
    if i==or(0, n)
        fk = f(z,xk);
    if rem(5, 2) == 1
        fk = 4.*f(z,xk);
    else
        fk = 2.*f(z,xk);
    fks = fks + fk;
    i = i + 1;
    end
simpson = (h./3).*fks;

Thanks in advance.

I have a running version for scilab here. I didn't check that the numerical result is good however

clear;
function func = foo(z, x)
    func = ((0.6369).*sin(z.*sin(x)).*sin(x))
endfunction

function simpson = simpson(f, a, b, n)
h  = (b-a)/n;
i   = 0;
fks = 0.0;
while (i<=n)
    xk = a+i*h;
    if i==or(0, n) then
        fk = f(xk);
    elseif (i-fix(i./2).*2)== 1 then
        // https://help.scilab.org/docs/5.5.0/en_US/m2sci_rem.html
        fk = 4.*f(xk);
    else
        fk = 2.*f(xk);
    end
    fks = fks + fk;
    i = i + 1;
end
simpson = (h./3).*fks;
endfunction

function func = baz(x)
    func = foo(1, x)
endfunction

simpson(baz, 0, 1.57, 10)

Thanks a lot, Gribouillis. But if anyone know how to do it using MatLab file-functions?

This question has already been answered. Start a new discussion instead.